Properties

Label 5.92779e2.12t183.1
Dimension 5
Group $S_6$
Conductor $ 92779^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$8607942841= 92779^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 3 x^{3} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 92 a + 45 + \left(107 a + 114\right)\cdot 193 + \left(54 a + 103\right)\cdot 193^{2} + \left(109 a + 89\right)\cdot 193^{3} + \left(102 a + 158\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 102 a + 136 + \left(59 a + 130\right)\cdot 193 + \left(87 a + 96\right)\cdot 193^{2} + \left(18 a + 157\right)\cdot 193^{3} + \left(77 a + 10\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 91 a + 45 + \left(133 a + 88\right)\cdot 193 + \left(105 a + 124\right)\cdot 193^{2} + \left(174 a + 88\right)\cdot 193^{3} + \left(115 a + 69\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 101 + 172\cdot 193 + 32\cdot 193^{2} + 49\cdot 193^{3} + 167\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 101 a + 137 + \left(85 a + 129\right)\cdot 193 + \left(138 a + 50\right)\cdot 193^{2} + \left(83 a + 144\right)\cdot 193^{3} + \left(90 a + 151\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 116 + 136\cdot 193 + 170\cdot 193^{2} + 49\cdot 193^{3} + 21\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.