Properties

Label 5.8647e2.10t13.1
Dimension 5
Group $S_5$
Conductor $ 8647^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$74770609= 8647^{2} $
Artin number field: Splitting field of $f= x^{5} - 3 x^{3} - 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 563 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 33 + 208\cdot 563 + 332\cdot 563^{2} + 389\cdot 563^{3} + 74\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 360 + 91\cdot 563 + 108\cdot 563^{2} + 190\cdot 563^{3} + 235\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 363 + 532\cdot 563 + 519\cdot 563^{2} + 379\cdot 563^{3} + 19\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 434 + 492\cdot 563 + 53\cdot 563^{2} + 293\cdot 563^{3} + 409\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 499 + 363\cdot 563 + 111\cdot 563^{2} + 436\cdot 563^{3} + 386\cdot 563^{4} +O\left(563^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $-1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.