Properties

Label 5.83e2_3673e2.12t183.1
Dimension 5
Group $S_6$
Conductor $ 83^{2} \cdot 3673^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$92939009881= 83^{2} \cdot 3673^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - 3 x^{3} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 4 + \left(4 a + 13\right)\cdot 31 + \left(13 a + 28\right)\cdot 31^{2} + \left(6 a + 10\right)\cdot 31^{3} + \left(27 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a + \left(8 a + 3\right)\cdot 31 + \left(21 a + 20\right)\cdot 31^{2} + \left(18 a + 30\right)\cdot 31^{3} + \left(15 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 27 + \left(22 a + 22\right)\cdot 31 + \left(9 a + 22\right)\cdot 31^{2} + \left(12 a + 15\right)\cdot 31^{3} + \left(15 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 21 + \left(2 a + 2\right)\cdot 31 + \left(14 a + 19\right)\cdot 31^{2} + \left(7 a + 27\right)\cdot 31^{3} + \left(27 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 29 + \left(28 a + 2\right)\cdot 31 + \left(16 a + 14\right)\cdot 31^{2} + \left(23 a + 28\right)\cdot 31^{3} + 3 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 12 + \left(26 a + 17\right)\cdot 31 + \left(17 a + 19\right)\cdot 31^{2} + \left(24 a + 10\right)\cdot 31^{3} + \left(3 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.