Properties

Label 5.7e4_139e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 7^{4} \cdot 139^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$46389721= 7^{4} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{5} - 3 x^{3} - x^{2} - 36 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 48 + 65\cdot 79 + 74\cdot 79^{2} + 23\cdot 79^{3} + 24\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 75 + \left(34 a + 44\right)\cdot 79 + 22\cdot 79^{2} + \left(70 a + 42\right)\cdot 79^{3} + \left(8 a + 61\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 a + 25 + \left(24 a + 45\right)\cdot 79 + 8\cdot 79^{2} + \left(5 a + 27\right)\cdot 79^{3} + \left(53 a + 51\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 a + 23 + \left(44 a + 52\right)\cdot 79 + \left(78 a + 67\right)\cdot 79^{2} + \left(8 a + 32\right)\cdot 79^{3} + 70 a\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 66 + \left(54 a + 28\right)\cdot 79 + \left(78 a + 63\right)\cdot 79^{2} + \left(73 a + 31\right)\cdot 79^{3} + \left(25 a + 20\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.