Properties

Label 5.7e2_43e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 7^{2} \cdot 43^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$3895843= 7^{2} \cdot 43^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 8 x^{3} - 6 x^{2} + 10 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 220\cdot 283 + 262\cdot 283^{2} + 280\cdot 283^{3} + 33\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 39 + 158\cdot 283 + 252\cdot 283^{2} + 247\cdot 283^{3} + 146\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 79 + 237\cdot 283 + 148\cdot 283^{2} + 246\cdot 283^{3} + 215\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 178 + 173\cdot 283 + 55\cdot 283^{2} + 182\cdot 283^{3} + 155\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 255 + 59\cdot 283 + 129\cdot 283^{2} + 174\cdot 283^{3} + 13\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.