Properties

Label 5.71e2_281e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 71^{2} \cdot 281^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$398042401= 71^{2} \cdot 281^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + x^{3} - 3 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 198 + 203\cdot 467 + 185\cdot 467^{2} + 314\cdot 467^{3} + 409\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 338 + 186\cdot 467 + 79\cdot 467^{2} + 398\cdot 467^{3} + 270\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 433 + 369\cdot 467 + 305\cdot 467^{2} + 344\cdot 467^{3} + 48\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 437 + 388\cdot 467 + 81\cdot 467^{2} + 126\cdot 467^{3} + 349\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 464 + 251\cdot 467 + 281\cdot 467^{2} + 217\cdot 467^{3} + 322\cdot 467^{4} +O\left(467^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.