Properties

Label 5.65657e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 65657^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$283036930148393= 65657^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even
Determinant: 1.65657.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + \left(6 a + 22\right)\cdot 29 + \left(9 a + 14\right)\cdot 29^{2} + \left(21 a + 27\right)\cdot 29^{3} + \left(28 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 24 + \left(22 a + 28\right)\cdot 29 + \left(19 a + 24\right)\cdot 29^{2} + \left(7 a + 8\right)\cdot 29^{3} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 6 + \left(14 a + 1\right)\cdot 29 + \left(26 a + 13\right)\cdot 29^{2} + \left(2 a + 10\right)\cdot 29^{3} + \left(4 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 26\cdot 29 + 18\cdot 29^{2} + 12\cdot 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 7 + \left(14 a + 8\right)\cdot 29 + \left(2 a + 15\right)\cdot 29^{2} + \left(26 a + 27\right)\cdot 29^{3} + \left(24 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.