Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 28 a + \left(6 a + 22\right)\cdot 29 + \left(9 a + 14\right)\cdot 29^{2} + \left(21 a + 27\right)\cdot 29^{3} + \left(28 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 24 + \left(22 a + 28\right)\cdot 29 + \left(19 a + 24\right)\cdot 29^{2} + \left(7 a + 8\right)\cdot 29^{3} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 a + 6 + \left(14 a + 1\right)\cdot 29 + \left(26 a + 13\right)\cdot 29^{2} + \left(2 a + 10\right)\cdot 29^{3} + \left(4 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 + 26\cdot 29 + 18\cdot 29^{2} + 12\cdot 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 7 + \left(14 a + 8\right)\cdot 29 + \left(2 a + 15\right)\cdot 29^{2} + \left(26 a + 27\right)\cdot 29^{3} + \left(24 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $10$ | $2$ | $(1,2)$ | $1$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.