Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 a + 12 + \left(9 a + 6\right)\cdot 13 + \left(4 a + 1\right)\cdot 13^{2} + \left(9 a + 8\right)\cdot 13^{3} + \left(9 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 6\cdot 13 + 8\cdot 13^{2} + 9\cdot 13^{3} + 12\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 a + 11 + \left(5 a + 2\right)\cdot 13 + \left(5 a + 3\right)\cdot 13^{2} + \left(12 a + 7\right)\cdot 13^{3} + \left(4 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 8 a + 4 + \left(3 a + 11\right)\cdot 13 + \left(8 a + 9\right)\cdot 13^{2} + \left(3 a + 12\right)\cdot 13^{3} + \left(3 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + 8 + \left(7 a + 11\right)\cdot 13 + \left(7 a + 2\right)\cdot 13^{2} + 13^{3} + \left(8 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.