Properties

Label 5.5e4_8209e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 5^{4} \cdot 8209^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$42117300625= 5^{4} \cdot 8209^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 3 x^{2} + 7 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 32 + \left(26 a + 4\right)\cdot 37 + \left(6 a + 6\right)\cdot 37^{2} + \left(31 a + 8\right)\cdot 37^{3} + 35 a\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 35 + \left(10 a + 25\right)\cdot 37 + \left(30 a + 6\right)\cdot 37^{2} + \left(5 a + 15\right)\cdot 37^{3} + \left(a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 21\cdot 37 + 21\cdot 37^{2} + 14\cdot 37^{3} + 27\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 9\cdot 37 + 26\cdot 37^{2} + 12\cdot 37^{3} + 30\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 12\cdot 37 + 13\cdot 37^{2} + 23\cdot 37^{3} + 14\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.