Properties

Label 5.5e4_17e5.6t14.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 5^{4} \cdot 17^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$887410625= 5^{4} \cdot 17^{5} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 4 x^{4} + 32 x^{3} - 59 x^{2} + 43 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 57 + \left(27 a + 34\right)\cdot 59 + \left(22 a + 21\right)\cdot 59^{2} + \left(17 a + 51\right)\cdot 59^{3} + \left(7 a + 31\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 + 52\cdot 59 + 24\cdot 59^{2} + 43\cdot 59^{3} + 21\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 a + 7 + \left(31 a + 53\right)\cdot 59 + \left(36 a + 16\right)\cdot 59^{2} + \left(41 a + 46\right)\cdot 59^{3} + \left(51 a + 21\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 50 + \left(28 a + 9\right)\cdot 59 + \left(39 a + 10\right)\cdot 59^{2} + \left(11 a + 51\right)\cdot 59^{3} + \left(28 a + 32\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 a + 54 + \left(30 a + 33\right)\cdot 59 + \left(19 a + 21\right)\cdot 59^{2} + \left(47 a + 23\right)\cdot 59^{3} + \left(30 a + 49\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 51\cdot 59 + 22\cdot 59^{2} + 20\cdot 59^{3} + 19\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,3,5,2)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,4)(2,5)(3,6)$ $-1$
$15$ $2$ $(1,6)(2,5)$ $1$
$20$ $3$ $(1,4,5)(2,6,3)$ $-1$
$30$ $4$ $(1,5,6,2)$ $1$
$24$ $5$ $(1,6,4,2,3)$ $0$
$20$ $6$ $(1,6,4,3,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.