Properties

Label 5.5e4_151e2.6t12.1
Dimension 5
Group $A_5$
Conductor $ 5^{4} \cdot 151^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$14250625= 5^{4} \cdot 151^{2} $
Artin number field: Splitting field of $f= x^{5} - 3 x^{3} - x^{2} + x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 4 + 8\cdot 11 + \left(7 a + 4\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + \left(6 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 9 + \left(10 a + 5\right)\cdot 11 + \left(3 a + 10\right)\cdot 11^{2} + 9\cdot 11^{3} + 4 a\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 5 + \left(3 a + 9\right)\cdot 11 + \left(7 a + 2\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + \left(6 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 10\cdot 11 + 7\cdot 11^{2} + 9\cdot 11^{3} + 9\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 9 + \left(7 a + 9\right)\cdot 11 + \left(3 a + 6\right)\cdot 11^{2} + 9\cdot 11^{3} + \left(4 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.