Properties

Label 5.5e4_103e4_127e4.12t183.1
Dimension 5
Group $S_6$
Conductor $ 5^{4} \cdot 103^{4} \cdot 127^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$18299692832486700625= 5^{4} \cdot 103^{4} \cdot 127^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 2 x^{3} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 12 + \left(19 a + 4\right)\cdot 31 + \left(28 a + 14\right)\cdot 31^{2} + \left(30 a + 30\right)\cdot 31^{3} + \left(8 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 21 + \left(11 a + 23\right)\cdot 31 + \left(2 a + 20\right)\cdot 31^{2} + 31^{3} + \left(22 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 30 + \left(14 a + 16\right)\cdot 31 + \left(13 a + 12\right)\cdot 31^{2} + 27\cdot 31^{3} + \left(12 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 20 + \left(21 a + 8\right)\cdot 31 + \left(15 a + 5\right)\cdot 31^{2} + 31^{3} + \left(8 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 15 + \left(16 a + 6\right)\cdot 31 + \left(17 a + 25\right)\cdot 31^{2} + \left(30 a + 14\right)\cdot 31^{3} + \left(18 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 27 + \left(9 a + 1\right)\cdot 31 + \left(15 a + 15\right)\cdot 31^{2} + \left(30 a + 17\right)\cdot 31^{3} + \left(22 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $1$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.