Properties

Label 5.5e3_293e2.6t14.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 5^{3} \cdot 293^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$10731125= 5^{3} \cdot 293^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} + 4 x^{3} - 3 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 48\cdot 79 + 77\cdot 79^{2} + 35\cdot 79^{3} + 33\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 54\cdot 79 + 52\cdot 79^{2} + 10\cdot 79^{3} + 5\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 42 + \left(51 a + 37\right)\cdot 79 + \left(29 a + 29\right)\cdot 79^{2} + \left(13 a + 69\right)\cdot 79^{3} + \left(77 a + 34\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 77 a + 70 + \left(21 a + 26\right)\cdot 79 + \left(63 a + 14\right)\cdot 79^{2} + \left(76 a + 27\right)\cdot 79^{3} + \left(64 a + 38\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 68 + \left(57 a + 50\right)\cdot 79 + \left(15 a + 55\right)\cdot 79^{2} + \left(2 a + 40\right)\cdot 79^{3} + \left(14 a + 26\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 33 + \left(27 a + 19\right)\cdot 79 + \left(49 a + 7\right)\cdot 79^{2} + \left(65 a + 53\right)\cdot 79^{3} + \left(a + 19\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,6)(2,5)(3,4)$ $-1$
$15$ $2$ $(2,6)(3,4)$ $1$
$20$ $3$ $(1,6,4)(2,3,5)$ $-1$
$30$ $4$ $(2,4,6,3)$ $1$
$24$ $5$ $(1,2,4,6,5)$ $0$
$20$ $6$ $(1,2,6,3,4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.