Properties

Label 5.5e3_263e3_1871e3.6t16.1
Dimension 5
Group $S_6$
Conductor $ 5^{3} \cdot 263^{3} \cdot 1871^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$14893563485249127125= 5^{3} \cdot 263^{3} \cdot 1871^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 7 x^{2} - 7 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 10\cdot 23 + 2\cdot 23^{2} + 8\cdot 23^{3} + 9\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 19 + \left(8 a + 11\right)\cdot 23 + \left(a + 21\right)\cdot 23^{2} + \left(6 a + 16\right)\cdot 23^{3} + \left(3 a + 14\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 23 + 14\cdot 23^{2} + 17\cdot 23^{3} + 12\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 2 + \left(14 a + 2\right)\cdot 23 + \left(21 a + 16\right)\cdot 23^{2} + \left(16 a + 4\right)\cdot 23^{3} + \left(19 a + 15\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 20 + \left(13 a + 3\right)\cdot 23 + \left(9 a + 16\right)\cdot 23^{2} + \left(16 a + 10\right)\cdot 23^{3} + \left(10 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 4 + \left(9 a + 16\right)\cdot 23 + \left(13 a + 21\right)\cdot 23^{2} + \left(6 a + 10\right)\cdot 23^{3} + \left(12 a + 22\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $-1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.