Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 457 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 232 + 411\cdot 457 + 331\cdot 457^{2} + 218\cdot 457^{3} + 88\cdot 457^{4} +O\left(457^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 265 + 412\cdot 457 + 390\cdot 457^{2} + 376\cdot 457^{3} + 347\cdot 457^{4} +O\left(457^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 434 + 441\cdot 457 + 117\cdot 457^{2} + 448\cdot 457^{3} + 125\cdot 457^{4} +O\left(457^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 444 + 338\cdot 457 + 281\cdot 457^{2} + 19\cdot 457^{3} + 138\cdot 457^{4} +O\left(457^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 454 + 222\cdot 457 + 248\cdot 457^{2} + 307\cdot 457^{3} + 213\cdot 457^{4} +O\left(457^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.