Properties

Label 5.5_7_43_179.6t16.1c1
Dimension 5
Group $S_6$
Conductor $ 5 \cdot 7 \cdot 43 \cdot 179 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$269395= 5 \cdot 7 \cdot 43 \cdot 179 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd
Determinant: 1.5_7_43_179.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 14\cdot 53 + 33\cdot 53^{2} + 23\cdot 53^{3} + 11\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 40 + \left(52 a + 39\right)\cdot 53 + \left(24 a + 5\right)\cdot 53^{2} + 33 a\cdot 53^{3} + \left(29 a + 31\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 43\cdot 53 + 14\cdot 53^{2} + 14\cdot 53^{3} + 14\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 3 + \left(18 a + 17\right)\cdot 53 + \left(45 a + 50\right)\cdot 53^{2} + \left(37 a + 5\right)\cdot 53^{3} + \left(a + 35\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 34 + \left(34 a + 16\right)\cdot 53 + \left(7 a + 1\right)\cdot 53^{2} + \left(15 a + 6\right)\cdot 53^{3} + \left(51 a + 4\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 a + 23 + 27\cdot 53 + 28 a\cdot 53^{2} + \left(19 a + 3\right)\cdot 53^{3} + \left(23 a + 10\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$-1$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.