Properties

Label 5.592661.6t16.1
Dimension 5
Group $S_6$
Conductor $ 592661 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$592661 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 173 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 173 }$: $ x^{2} + 169 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 112 + 143\cdot 173 + 144\cdot 173^{2} + 71\cdot 173^{3} + 99\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 148 a + 133 + \left(28 a + 79\right)\cdot 173 + \left(64 a + 106\right)\cdot 173^{2} + \left(20 a + 4\right)\cdot 173^{3} + \left(10 a + 55\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 33 + \left(144 a + 47\right)\cdot 173 + \left(108 a + 161\right)\cdot 173^{2} + \left(152 a + 21\right)\cdot 173^{3} + \left(162 a + 75\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 98 a + 128 + \left(56 a + 112\right)\cdot 173 + \left(156 a + 162\right)\cdot 173^{2} + \left(28 a + 156\right)\cdot 173^{3} + \left(85 a + 129\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 113 + 67\cdot 173 + 77\cdot 173^{2} + 147\cdot 173^{3} + 63\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 75 a + 1 + \left(116 a + 68\right)\cdot 173 + \left(16 a + 39\right)\cdot 173^{2} + \left(144 a + 116\right)\cdot 173^{3} + \left(87 a + 95\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.