Properties

Label 5.47e3_4157e3.6t16.1
Dimension 5
Group $S_6$
Conductor $ 47^{3} \cdot 4157^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$7458193509424939= 47^{3} \cdot 4157^{3} $
Artin number field: Splitting field of $f= x^{6} + x^{4} - 2 x^{3} - 3 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 29\cdot 37 + 15\cdot 37^{2} + 8\cdot 37^{3} + 33\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 36\cdot 37 + 27\cdot 37^{2} + 28\cdot 37^{3} + 19\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + \left(20 a + 30\right)\cdot 37 + \left(14 a + 28\right)\cdot 37^{2} + \left(8 a + 24\right)\cdot 37^{3} + \left(4 a + 24\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 31 + \left(16 a + 20\right)\cdot 37 + \left(22 a + 29\right)\cdot 37^{2} + \left(28 a + 6\right)\cdot 37^{3} + \left(32 a + 33\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 + 27\cdot 37 + 37^{2} + 16\cdot 37^{3} + 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 3\cdot 37 + 7\cdot 37^{2} + 26\cdot 37^{3} + 35\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $-1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.