Properties

Label 5.47149e2.12t183.1
Dimension 5
Group $S_6$
Conductor $ 47149^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$2223028201= 47149^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} - 2 x^{3} + x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 24 + \left(17 a + 18\right)\cdot 43 + \left(24 a + 16\right)\cdot 43^{2} + \left(6 a + 15\right)\cdot 43^{3} + \left(37 a + 24\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 13 + \left(6 a + 7\right)\cdot 43 + \left(25 a + 26\right)\cdot 43^{2} + \left(12 a + 18\right)\cdot 43^{3} + \left(14 a + 3\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 1 + \left(36 a + 26\right)\cdot 43 + \left(17 a + 1\right)\cdot 43^{2} + \left(30 a + 6\right)\cdot 43^{3} + \left(28 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 23\cdot 43 + 36\cdot 43^{2} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 10 + \left(25 a + 7\right)\cdot 43 + \left(18 a + 23\right)\cdot 43^{2} + \left(36 a + 40\right)\cdot 43^{3} + \left(5 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 + 3\cdot 43 + 25\cdot 43^{2} + 4\cdot 43^{3} + 12\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.