Properties

Label 5.4597e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 4597^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$97145684173= 4597^{3} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - 2 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 353 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 113 + 146\cdot 353 + 304\cdot 353^{2} + 348\cdot 353^{3} + 275\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 152 + 112\cdot 353 + 231\cdot 353^{2} + 243\cdot 353^{3} + 275\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 164 + 221\cdot 353 + 253\cdot 353^{2} + 199\cdot 353^{3} + 171\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 292 + 197\cdot 353 + 331\cdot 353^{2} + 273\cdot 353^{3} + 3\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 338 + 27\cdot 353 + 291\cdot 353^{2} + 345\cdot 353^{3} + 331\cdot 353^{4} +O\left(353^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.