Properties

Label 5.43e2_1439e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 43^{2} \cdot 1439^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$3828763129= 43^{2} \cdot 1439^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 4 x^{3} - 4 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 326\cdot 379 + 277\cdot 379^{2} + 46\cdot 379^{3} + 171\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 113 + 344\cdot 379 + 308\cdot 379^{2} + 194\cdot 379^{3} + 61\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 146 + 289\cdot 379 + 18\cdot 379^{2} + 59\cdot 379^{3} + 333\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 246 + 145\cdot 379 + 96\cdot 379^{2} + 261\cdot 379^{3} + 246\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 248 + 31\cdot 379 + 56\cdot 379^{2} + 196\cdot 379^{3} + 324\cdot 379^{4} +O\left(379^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.