Properties

Label 5.501...641.12t183.a.a
Dimension $5$
Group $S_6$
Conductor $5.020\times 10^{25}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $5$
Group: $S_6$
Conductor: \(501\!\cdots\!641\)\(\medspace = 41^{4} \cdot 64921^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.6.2661761.1
Galois orbit size: $1$
Smallest permutation container: 12T183
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_6$
Projective stem field: Galois closure of 6.6.2661761.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - 6x^{4} + 3x^{3} + 9x^{2} - x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: \( x^{2} + 63x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 33 + 34\cdot 67 + 14\cdot 67^{2} + 25\cdot 67^{3} + 12\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 26 a + 1 + \left(32 a + 56\right)\cdot 67 + \left(62 a + 10\right)\cdot 67^{2} + \left(50 a + 52\right)\cdot 67^{3} + \left(32 a + 5\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 31 + 43\cdot 67 + 33\cdot 67^{2} + 42\cdot 67^{3} + 36\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 41 a + 38 + \left(34 a + 25\right)\cdot 67 + \left(4 a + 27\right)\cdot 67^{2} + \left(16 a + 59\right)\cdot 67^{3} + \left(34 a + 18\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 20\cdot 67 + 8\cdot 67^{3} + 51\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 21 + 21\cdot 67 + 47\cdot 67^{2} + 13\cdot 67^{3} + 9\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$1$
$15$$2$$(1,2)$$-3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$0$