Properties

Label 5.3e8_73e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 3^{8} \cdot 73^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$2552340537= 3^{8} \cdot 73^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 457 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 171\cdot 457 + 240\cdot 457^{2} + 61\cdot 457^{3} + 205\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 102 + 353\cdot 457 + 118\cdot 457^{2} + 178\cdot 457^{3} + 93\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 149 + 343\cdot 457 + 127\cdot 457^{2} + 182\cdot 457^{3} + 368\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 237 + 251\cdot 457 + 79\cdot 457^{2} + 429\cdot 457^{3} + 235\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 382 + 251\cdot 457 + 347\cdot 457^{2} + 62\cdot 457^{3} + 11\cdot 457^{4} +O\left(457^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.