Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 27 a + 29 + \left(3 a + 20\right)\cdot 29^{2} + a\cdot 29^{3} + \left(13 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 19 + \left(28 a + 7\right)\cdot 29 + \left(25 a + 5\right)\cdot 29^{2} + \left(27 a + 3\right)\cdot 29^{3} + \left(15 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 25 + 18\cdot 29 + 24\cdot 29^{2} + 8\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 a + 7 + \left(19 a + 18\right)\cdot 29 + \left(21 a + 6\right)\cdot 29^{2} + 2 a\cdot 29^{3} + \left(9 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + 21 + \left(9 a + 4\right)\cdot 29 + \left(7 a + 8\right)\cdot 29^{2} + \left(26 a + 21\right)\cdot 29^{3} + \left(19 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 15 + 7\cdot 29 + 22\cdot 29^{2} + 23\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $1$ |
| $15$ | $2$ | $(1,2)$ | $-3$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
| $40$ | $3$ | $(1,2,3)$ | $2$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.