Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 a + 35 + \left(24 a + 35\right)\cdot 47 + \left(3 a + 44\right)\cdot 47^{2} + \left(43 a + 44\right)\cdot 47^{3} + \left(38 a + 41\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 + 33\cdot 47 + 43\cdot 47^{2} + 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 a + 2 + \left(18 a + 19\right)\cdot 47 + \left(44 a + 39\right)\cdot 47^{2} + \left(14 a + 7\right)\cdot 47^{3} + \left(a + 11\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 33 a + 30 + \left(28 a + 41\right)\cdot 47 + \left(2 a + 15\right)\cdot 47^{2} + \left(32 a + 40\right)\cdot 47^{3} + \left(45 a + 45\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 + 3\cdot 47 + 17\cdot 47^{2} + 12\cdot 47^{3} + 41\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a + 1 + \left(22 a + 8\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(3 a + 33\right)\cdot 47^{3} + \left(8 a + 29\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $3$ |
| $15$ | $2$ | $(1,2)$ | $-1$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $2$ |
| $40$ | $3$ | $(1,2,3)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.