Properties

Label 5.8732691.6t16.b.a
Dimension $5$
Group $S_6$
Conductor $8732691$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $5$
Group: $S_6$
Conductor: \(8732691\)\(\medspace = 3^{8} \cdot 11^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.4.1056655611.1
Galois orbit size: $1$
Smallest permutation container: $S_6$
Parity: odd
Determinant: 1.11.2t1.a.a
Projective image: $S_6$
Projective stem field: Galois closure of 6.4.1056655611.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 44x^{3} + 99x^{2} - 66x + 11 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 30 a + 35 + \left(24 a + 35\right)\cdot 47 + \left(3 a + 44\right)\cdot 47^{2} + \left(43 a + 44\right)\cdot 47^{3} + \left(38 a + 41\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 + 33\cdot 47 + 43\cdot 47^{2} + 47^{3} + 18\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 a + 2 + \left(18 a + 19\right)\cdot 47 + \left(44 a + 39\right)\cdot 47^{2} + \left(14 a + 7\right)\cdot 47^{3} + \left(a + 11\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 33 a + 30 + \left(28 a + 41\right)\cdot 47 + \left(2 a + 15\right)\cdot 47^{2} + \left(32 a + 40\right)\cdot 47^{3} + \left(45 a + 45\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 + 3\cdot 47 + 17\cdot 47^{2} + 12\cdot 47^{3} + 41\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 a + 1 + \left(22 a + 8\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(3 a + 33\right)\cdot 47^{3} + \left(8 a + 29\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$-1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$-1$