Basic invariants
| Dimension: | $5$ |
| Group: | $S_6$ |
| Conductor: | \(8732691\)\(\medspace = 3^{8} \cdot 11^{3} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 6.4.1056655611.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_6$ |
| Parity: | odd |
| Determinant: | 1.11.2t1.a.a |
| Projective image: | $S_6$ |
| Projective stem field: | Galois closure of 6.4.1056655611.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{6} - 44x^{3} + 99x^{2} - 66x + 11 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$:
\( x^{2} + 45x + 5 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 30 a + 35 + \left(24 a + 35\right)\cdot 47 + \left(3 a + 44\right)\cdot 47^{2} + \left(43 a + 44\right)\cdot 47^{3} + \left(38 a + 41\right)\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 17 + 33\cdot 47 + 43\cdot 47^{2} + 47^{3} + 18\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 14 a + 2 + \left(18 a + 19\right)\cdot 47 + \left(44 a + 39\right)\cdot 47^{2} + \left(14 a + 7\right)\cdot 47^{3} + \left(a + 11\right)\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 33 a + 30 + \left(28 a + 41\right)\cdot 47 + \left(2 a + 15\right)\cdot 47^{2} + \left(32 a + 40\right)\cdot 47^{3} + \left(45 a + 45\right)\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 9 + 3\cdot 47 + 17\cdot 47^{2} + 12\cdot 47^{3} + 41\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 17 a + 1 + \left(22 a + 8\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(3 a + 33\right)\cdot 47^{3} + \left(8 a + 29\right)\cdot 47^{4} +O(47^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $5$ | |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $3$ | |
| $15$ | $2$ | $(1,2)$ | $-1$ | ✓ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ | |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $2$ | |
| $40$ | $3$ | $(1,2,3)$ | $-1$ | |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ | |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ | |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ | |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ | |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |