Properties

Label 5.3e7_461e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 3^{7} \cdot 461^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$214265159847= 3^{7} \cdot 461^{3} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.3_461.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 30\cdot 47 + 32\cdot 47^{2} + 11\cdot 47^{3} + 39\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 a + 22 + \left(24 a + 32\right)\cdot 47 + \left(35 a + 17\right)\cdot 47^{2} + \left(29 a + 35\right)\cdot 47^{3} + \left(3 a + 6\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 4 + \left(22 a + 44\right)\cdot 47 + \left(11 a + 16\right)\cdot 47^{2} + \left(17 a + 12\right)\cdot 47^{3} + \left(43 a + 31\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 36 + \left(7 a + 39\right)\cdot 47 + \left(17 a + 46\right)\cdot 47^{2} + \left(43 a + 5\right)\cdot 47^{3} + \left(13 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 15 + \left(39 a + 41\right)\cdot 47 + \left(29 a + 26\right)\cdot 47^{2} + \left(3 a + 28\right)\cdot 47^{3} + 33 a\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.