Properties

Label 5.3e7_19e3.6t14.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 3^{7} \cdot 19^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$15000633= 3^{7} \cdot 19^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 3 x^{4} + 4 x^{3} - 12 x^{2} + 6 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 56 + \left(44 a + 25\right)\cdot 61 + \left(13 a + 24\right)\cdot 61^{2} + \left(44 a + 25\right)\cdot 61^{3} + \left(43 a + 10\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 22 + \left(18 a + 46\right)\cdot 61 + \left(53 a + 12\right)\cdot 61^{2} + \left(9 a + 19\right)\cdot 61^{3} + \left(29 a + 41\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 50 + \left(42 a + 36\right)\cdot 61 + \left(7 a + 47\right)\cdot 61^{2} + \left(51 a + 36\right)\cdot 61^{3} + \left(31 a + 60\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 30 + \left(16 a + 35\right)\cdot 61 + \left(47 a + 54\right)\cdot 61^{2} + \left(16 a + 55\right)\cdot 61^{3} + \left(17 a + 9\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 17\cdot 61 + 52\cdot 61^{2} + 18\cdot 61^{3} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 + 20\cdot 61 + 52\cdot 61^{2} + 26\cdot 61^{3} + 4\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,5,6,3,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,5)(2,6)(3,4)$ $-1$
$15$ $2$ $(1,5)(3,6)$ $1$
$20$ $3$ $(1,6,2)(3,4,5)$ $-1$
$30$ $4$ $(1,3,5,6)$ $1$
$24$ $5$ $(2,5,4,6,3)$ $0$
$20$ $6$ $(1,5,6,3,2,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.