Properties

Label 5.3e6_71e4.6t12.1
Dimension 5
Group $A_5$
Conductor $ 3^{6} \cdot 71^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$18525115449= 3^{6} \cdot 71^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + x^{3} - 9 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 17\cdot 101 + 12\cdot 101^{2} + 26\cdot 101^{3} + 87\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 48\cdot 101 + 11\cdot 101^{2} + 95\cdot 101^{3} + 33\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 68\cdot 101 + 80\cdot 101^{2} + 13\cdot 101^{3} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 14\cdot 101 + 25\cdot 101^{2} + 57\cdot 101^{3} + 85\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 91 + 53\cdot 101 + 72\cdot 101^{2} + 9\cdot 101^{3} + 96\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.