Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 37 + 21\cdot 43 + 41\cdot 43^{2} + 26\cdot 43^{3} + 10\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 8 + \left(36 a + 4\right)\cdot 43 + \left(3 a + 19\right)\cdot 43^{2} + \left(23 a + 7\right)\cdot 43^{3} + \left(23 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 9 a + 36 + \left(30 a + 9\right)\cdot 43 + \left(13 a + 9\right)\cdot 43^{2} + \left(9 a + 24\right)\cdot 43^{3} + \left(8 a + 6\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 31 + 28\cdot 43 + 36\cdot 43^{2} + 23\cdot 43^{3} + 32\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 36 a + 15 + \left(6 a + 33\right)\cdot 43 + \left(39 a + 29\right)\cdot 43^{2} + \left(19 a + 26\right)\cdot 43^{3} + \left(19 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 34 a + 2 + \left(12 a + 31\right)\cdot 43 + \left(29 a + 35\right)\cdot 43^{2} + \left(33 a + 19\right)\cdot 43^{3} + \left(34 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-3$ |
| $15$ |
$2$ |
$(1,2)$ |
$1$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.