Properties

Label 5.3e6_5e4_13e4.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 3^{6} \cdot 5^{4} \cdot 13^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$13013105625= 3^{6} \cdot 5^{4} \cdot 13^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + x^{3} + 3 x^{2} - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 237\cdot 251 + 142\cdot 251^{2} + 15\cdot 251^{3} + 89\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 171\cdot 251 + 30\cdot 251^{2} + 109\cdot 251^{3} + 211\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 + 35\cdot 251 + 195\cdot 251^{2} + 102\cdot 251^{3} + 159\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 191 + 209\cdot 251 + 64\cdot 251^{2} + 3\cdot 251^{3} + 63\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 214 + 99\cdot 251 + 68\cdot 251^{2} + 20\cdot 251^{3} + 230\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.