Properties

Label 5.3e6_31e4.6t15.1
Dimension 5
Group $A_6$
Conductor $ 3^{6} \cdot 31^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_6$
Conductor:$673246809= 3^{6} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{6} - 15 x^{4} - 31 x^{3} - 18 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 9 + \left(68 a + 70\right)\cdot 101 + \left(43 a + 27\right)\cdot 101^{2} + \left(87 a + 45\right)\cdot 101^{3} + \left(8 a + 60\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 47\cdot 101 + 49\cdot 101^{2} + 87\cdot 101^{3} + 52\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 14 + \left(96 a + 90\right)\cdot 101 + \left(22 a + 44\right)\cdot 101^{2} + \left(29 a + 86\right)\cdot 101^{3} + \left(20 a + 78\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 82 a + 85 + \left(32 a + 20\right)\cdot 101 + \left(57 a + 33\right)\cdot 101^{2} + \left(13 a + 48\right)\cdot 101^{3} + \left(92 a + 8\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 a + 17 + \left(4 a + 45\right)\cdot 101 + \left(78 a + 40\right)\cdot 101^{2} + \left(71 a + 79\right)\cdot 101^{3} + \left(80 a + 29\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 + 29\cdot 101 + 6\cdot 101^{2} + 57\cdot 101^{3} + 72\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$72$ $5$ $(1,2,3,4,5)$ $0$
$72$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.