Basic invariants
| Dimension: | $5$ |
| Group: | $A_5$ |
| Conductor: | \(204004089\)\(\medspace = 3^{6} \cdot 23^{4} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 5.1.42849.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $\PSL(2,5)$ |
| Parity: | even |
| Projective image: | $A_5$ |
| Projective field: | Galois closure of 5.1.42849.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{2} + 12x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 a + 9 + \left(a + 5\right)\cdot 13 + \left(3 a + 7\right)\cdot 13^{2} + \left(a + 7\right)\cdot 13^{3} + \left(4 a + 4\right)\cdot 13^{4} +O(13^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 11 a + 11 + \left(11 a + 4\right)\cdot 13 + \left(9 a + 9\right)\cdot 13^{2} + \left(11 a + 5\right)\cdot 13^{3} + \left(8 a + 7\right)\cdot 13^{4} +O(13^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 6 + 4\cdot 13 + 7\cdot 13^{2} + 8\cdot 13^{3} + 9\cdot 13^{4} +O(13^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 7 a + 10 + \left(2 a + 7\right)\cdot 13 + \left(6 a + 5\right)\cdot 13^{2} + \left(10 a + 6\right)\cdot 13^{3} + \left(3 a + 5\right)\cdot 13^{4} +O(13^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 6 a + 4 + \left(10 a + 3\right)\cdot 13 + \left(6 a + 9\right)\cdot 13^{2} + \left(2 a + 10\right)\cdot 13^{3} + \left(9 a + 11\right)\cdot 13^{4} +O(13^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |