Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35 a + 56 + \left(44 a + 25\right)\cdot 61 + \left(13 a + 24\right)\cdot 61^{2} + \left(44 a + 25\right)\cdot 61^{3} + \left(43 a + 10\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 28 a + 22 + \left(18 a + 46\right)\cdot 61 + \left(53 a + 12\right)\cdot 61^{2} + \left(9 a + 19\right)\cdot 61^{3} + \left(29 a + 41\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 33 a + 50 + \left(42 a + 36\right)\cdot 61 + \left(7 a + 47\right)\cdot 61^{2} + \left(51 a + 36\right)\cdot 61^{3} + \left(31 a + 60\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 a + 30 + \left(16 a + 35\right)\cdot 61 + \left(47 a + 54\right)\cdot 61^{2} + \left(16 a + 55\right)\cdot 61^{3} + \left(17 a + 9\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 58 + 17\cdot 61 + 52\cdot 61^{2} + 18\cdot 61^{3} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 31 + 20\cdot 61 + 52\cdot 61^{2} + 26\cdot 61^{3} + 4\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5)(2,6)(3,4)$ |
| $(1,5,6,3,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $10$ |
$2$ |
$(1,5)(2,6)(3,4)$ |
$1$ |
| $15$ |
$2$ |
$(1,5)(3,6)$ |
$1$ |
| $20$ |
$3$ |
$(1,6,2)(3,4,5)$ |
$-1$ |
| $30$ |
$4$ |
$(1,3,5,6)$ |
$-1$ |
| $24$ |
$5$ |
$(2,5,4,6,3)$ |
$0$ |
| $20$ |
$6$ |
$(1,5,6,3,2,4)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.