Properties

Label 5.3e6_19e4.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 3^{6} \cdot 19^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$95004009= 3^{6} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - 7 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 25 + \left(9 a + 54\right)\cdot 61 + \left(54 a + 43\right)\cdot 61^{2} + \left(19 a + 3\right)\cdot 61^{3} + \left(49 a + 59\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 9 + \left(40 a + 26\right)\cdot 61 + \left(55 a + 15\right)\cdot 61^{2} + \left(45 a + 48\right)\cdot 61^{3} + \left(44 a + 39\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 33 + \left(51 a + 55\right)\cdot 61 + \left(6 a + 27\right)\cdot 61^{2} + \left(41 a + 30\right)\cdot 61^{3} + \left(11 a + 27\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 a + 21 + \left(20 a + 54\right)\cdot 61 + \left(5 a + 30\right)\cdot 61^{2} + \left(15 a + 38\right)\cdot 61^{3} + \left(16 a + 38\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 + 53\cdot 61 + 3\cdot 61^{2} + 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.