Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 4\cdot 17^{2} + 10\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 6 + \left(16 a + 5\right)\cdot 17 + \left(16 a + 9\right)\cdot 17^{2} + \left(11 a + 11\right)\cdot 17^{3} + \left(14 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 11 + \left(13 a + 3\right)\cdot 17 + \left(13 a + 5\right)\cdot 17^{2} + \left(7 a + 14\right)\cdot 17^{3} + \left(16 a + 13\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 a + 8 + 2\cdot 17 + 10\cdot 17^{2} + \left(5 a + 6\right)\cdot 17^{3} + \left(2 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a + 6 + \left(3 a + 5\right)\cdot 17 + \left(3 a + 5\right)\cdot 17^{2} + \left(9 a + 8\right)\cdot 17^{3} + 5\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $10$ | $2$ | $(1,2)$ | $1$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.