Properties

Label 5.3e4_311e2.10t13.2c1
Dimension 5
Group $\PGL(2,5)$
Conductor $ 3^{4} \cdot 311^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$7834401= 3^{4} \cdot 311^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 7 x^{4} - 6 x^{3} + 6 x^{2} - 7 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 50 a + 37 + \left(26 a + 28\right)\cdot 67 + \left(16 a + 65\right)\cdot 67^{2} + \left(44 a + 12\right)\cdot 67^{3} + \left(50 a + 53\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 46\cdot 67 + 9\cdot 67^{2} + 50\cdot 67^{3} + 19\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 32\cdot 67 + 33\cdot 67^{2} + 43\cdot 67^{3} + 43\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 a + 45 + \left(5 a + 24\right)\cdot 67 + \left(54 a + 56\right)\cdot 67^{2} + \left(49 a + 21\right)\cdot 67^{3} + \left(12 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 36 + \left(40 a + 18\right)\cdot 67 + \left(50 a + 37\right)\cdot 67^{2} + \left(22 a + 39\right)\cdot 67^{3} + \left(16 a + 10\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 37 + \left(61 a + 50\right)\cdot 67 + \left(12 a + 65\right)\cdot 67^{2} + \left(17 a + 32\right)\cdot 67^{3} + \left(54 a + 37\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3,2,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)(3,4)(5,6)$$1$
$15$$2$$(1,5)(4,6)$$1$
$20$$3$$(1,2,6)(3,4,5)$$-1$
$30$$4$$(1,6,5,4)$$-1$
$24$$5$$(1,4,2,3,6)$$0$
$20$$6$$(1,3,2,4,6,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.