Properties

Label 5.3e3_877e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 3^{3} \cdot 877^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$18212205591= 3^{3} \cdot 877^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + x^{2} - 2 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 14 + \left(13 a + 46\right)\cdot 47 + \left(9 a + 41\right)\cdot 47^{2} + \left(31 a + 30\right)\cdot 47^{3} + \left(5 a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 a + 42 + \left(33 a + 11\right)\cdot 47 + 37 a\cdot 47^{2} + \left(15 a + 37\right)\cdot 47^{3} + \left(41 a + 13\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 a + 11 + \left(22 a + 27\right)\cdot 47 + \left(45 a + 17\right)\cdot 47^{2} + \left(17 a + 7\right)\cdot 47^{3} + \left(24 a + 38\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 42 + \left(24 a + 33\right)\cdot 47 + \left(a + 38\right)\cdot 47^{2} + \left(29 a + 44\right)\cdot 47^{3} + \left(22 a + 21\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 + 21\cdot 47 + 42\cdot 47^{2} + 20\cdot 47^{3} + 33\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.