Properties

Label 5.3e3_5e8.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 3^{3} \cdot 5^{8}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$10546875= 3^{3} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{5} - 10 x^{3} - 5 x^{2} - 15 x - 31 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 96 a + 6 + \left(6 a + 28\right)\cdot 103 + \left(95 a + 47\right)\cdot 103^{2} + \left(20 a + 11\right)\cdot 103^{3} + \left(90 a + 4\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 14 + \left(53 a + 9\right)\cdot 103 + \left(39 a + 59\right)\cdot 103^{2} + \left(19 a + 69\right)\cdot 103^{3} + \left(38 a + 30\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 88 a + 29 + \left(49 a + 47\right)\cdot 103 + \left(63 a + 45\right)\cdot 103^{2} + \left(83 a + 49\right)\cdot 103^{3} + \left(64 a + 49\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 + 79\cdot 103 + 21\cdot 103^{2} + 35\cdot 103^{3} + 48\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 102 + \left(96 a + 41\right)\cdot 103 + \left(7 a + 32\right)\cdot 103^{2} + \left(82 a + 40\right)\cdot 103^{3} + \left(12 a + 73\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.