Properties

Label 5.3e3_463e2.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 3^{3} \cdot 463^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$5787963= 3^{3} \cdot 463^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 6 x^{2} + 12 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 28 + 12\cdot 43^{2} + 16\cdot 43^{3} + 33\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 1 + \left(10 a + 6\right)\cdot 43 + 24 a\cdot 43^{2} + \left(37 a + 13\right)\cdot 43^{3} + \left(10 a + 37\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 a + 6 + \left(12 a + 26\right)\cdot 43 + \left(11 a + 30\right)\cdot 43^{2} + \left(10 a + 15\right)\cdot 43^{3} + \left(23 a + 17\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 10 + \left(32 a + 7\right)\cdot 43 + \left(18 a + 14\right)\cdot 43^{2} + \left(5 a + 26\right)\cdot 43^{3} + \left(32 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 42 + \left(30 a + 2\right)\cdot 43 + \left(31 a + 29\right)\cdot 43^{2} + \left(32 a + 14\right)\cdot 43^{3} + \left(19 a + 30\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.