Properties

Label 5.3e3_359e2.6t14.1
Dimension 5
Group $S_5$
Conductor $ 3^{3} \cdot 359^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$3479787= 3^{3} \cdot 359^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 6 x^{3} + 4 x^{2} + 7 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 12\cdot 31 + 16\cdot 31^{2} + 21\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 3 + \left(5 a + 6\right)\cdot 31 + \left(4 a + 2\right)\cdot 31^{2} + \left(15 a + 14\right)\cdot 31^{3} + \left(29 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 9 + \left(12 a + 16\right)\cdot 31 + \left(27 a + 13\right)\cdot 31^{2} + \left(3 a + 18\right)\cdot 31^{3} + \left(9 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 7 + \left(18 a + 12\right)\cdot 31 + \left(3 a + 24\right)\cdot 31^{2} + \left(27 a + 29\right)\cdot 31^{3} + \left(21 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 5 + \left(25 a + 15\right)\cdot 31 + \left(26 a + 5\right)\cdot 31^{2} + \left(15 a + 9\right)\cdot 31^{3} + \left(a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.