Properties

Label 5.3e2_3469e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 3^{2} \cdot 3469^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$108305649= 3^{2} \cdot 3469^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 3 x^{3} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 13 + \left(22 a + 14\right)\cdot 29 + \left(12 a + 26\right)\cdot 29^{2} + \left(8 a + 17\right)\cdot 29^{3} + \left(13 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 24 + \left(2 a + 9\right)\cdot 29 + \left(27 a + 11\right)\cdot 29^{2} + \left(23 a + 8\right)\cdot 29^{3} + \left(20 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 14 + \left(26 a + 26\right)\cdot 29 + \left(a + 27\right)\cdot 29^{2} + \left(5 a + 13\right)\cdot 29^{3} + \left(8 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 20\cdot 29 + 11\cdot 29^{2} + 28\cdot 29^{3} + 4\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 27 + \left(6 a + 15\right)\cdot 29 + \left(16 a + 9\right)\cdot 29^{2} + \left(20 a + 18\right)\cdot 29^{3} + \left(15 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.