Properties

Label 5.3e11_263e3.6t16.1c1
Dimension 5
Group $S_6$
Conductor $ 3^{11} \cdot 263^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$3222560261709= 3^{11} \cdot 263^{3} $
Artin number field: Splitting field of $f= x^{6} + 2 x^{4} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even
Determinant: 1.3_263.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 29 + \left(3 a + 20\right)\cdot 29^{2} + a\cdot 29^{3} + \left(13 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 19 + \left(28 a + 7\right)\cdot 29 + \left(25 a + 5\right)\cdot 29^{2} + \left(27 a + 3\right)\cdot 29^{3} + \left(15 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 18\cdot 29 + 24\cdot 29^{2} + 8\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 7 + \left(19 a + 18\right)\cdot 29 + \left(21 a + 6\right)\cdot 29^{2} + 2 a\cdot 29^{3} + \left(9 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 21 + \left(9 a + 4\right)\cdot 29 + \left(7 a + 8\right)\cdot 29^{2} + \left(26 a + 21\right)\cdot 29^{3} + \left(19 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 7\cdot 29 + 22\cdot 29^{2} + 23\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$-1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.