Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 42\cdot 311 + 169\cdot 311^{2} + 275\cdot 311^{3} + 188\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 178 + 66\cdot 311 + 83\cdot 311^{2} + 306\cdot 311^{3} + 283\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 224 + 261\cdot 311 + 143\cdot 311^{2} + 74\cdot 311^{3} + 94\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 261 + 310\cdot 311 + 19\cdot 311^{2} + 227\cdot 311^{3} + 110\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 271 + 309\cdot 311 + 283\cdot 311^{2} + 257\cdot 311^{3} + 5\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 302 + 252\cdot 311 + 232\cdot 311^{2} + 102\cdot 311^{3} + 249\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $72$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $72$ |
$5$ |
$(1,3,4,5,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.