Properties

Label 5.3e10_17e4.6t12.2c1
Dimension 5
Group $\PSL(2,5)$
Conductor $ 3^{10} \cdot 17^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PSL(2,5)$
Conductor:$4931831529= 3^{10} \cdot 17^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 15 x^{4} + 35 x^{3} + 90 x^{2} + 45 x + 39 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 4 + \left(6 a + 5\right)\cdot 7 + \left(5 a + 1\right)\cdot 7^{2} + \left(3 a + 5\right)\cdot 7^{3} + \left(3 a + 3\right)\cdot 7^{4} + 2\cdot 7^{5} + 6\cdot 7^{6} + 6\cdot 7^{7} + 3 a\cdot 7^{8} + \left(6 a + 2\right)\cdot 7^{9} + \left(a + 5\right)\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 3 + 4\cdot 7 + 4\cdot 7^{2} + 3\cdot 7^{3} + 7^{4} + 3\cdot 7^{5} + 3\cdot 7^{6} + 2\cdot 7^{7} + 7^{8} + 4\cdot 7^{9} +O\left(7^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 3 + \left(3 a + 6\right)\cdot 7 + \left(4 a + 3\right)\cdot 7^{2} + \left(3 a + 6\right)\cdot 7^{3} + \left(4 a + 1\right)\cdot 7^{4} + \left(2 a + 6\right)\cdot 7^{5} + \left(2 a + 1\right)\cdot 7^{6} + 3\cdot 7^{7} + \left(a + 2\right)\cdot 7^{8} + \left(a + 2\right)\cdot 7^{9} + \left(a + 5\right)\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 2 + 2\cdot 7 + 4\cdot 7^{2} + 3\cdot 7^{3} + 5\cdot 7^{5} + 7^{6} + 2\cdot 7^{8} + 4\cdot 7^{9} + 3\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 6 + 2\cdot 7 + \left(a + 1\right)\cdot 7^{2} + \left(3 a + 3\right)\cdot 7^{3} + \left(3 a + 3\right)\cdot 7^{4} + \left(6 a + 6\right)\cdot 7^{5} + \left(6 a + 5\right)\cdot 7^{6} + \left(6 a + 6\right)\cdot 7^{7} + \left(3 a + 3\right)\cdot 7^{8} + 5\cdot 7^{9} + 5 a\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 6 + \left(3 a + 6\right)\cdot 7 + \left(2 a + 4\right)\cdot 7^{2} + \left(3 a + 5\right)\cdot 7^{3} + \left(2 a + 2\right)\cdot 7^{4} + \left(4 a + 4\right)\cdot 7^{5} + \left(4 a + 1\right)\cdot 7^{6} + \left(6 a + 1\right)\cdot 7^{7} + \left(5 a + 3\right)\cdot 7^{8} + \left(5 a + 2\right)\cdot 7^{9} + \left(5 a + 5\right)\cdot 7^{10} +O\left(7^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,5)$
$(1,6,2)(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,4)(3,5)$$1$
$20$$3$$(1,6,2)(3,4,5)$$-1$
$12$$5$$(1,6,2,4,3)$$0$
$12$$5$$(1,2,3,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.