Properties

Label 5.37423.6t16.1
Dimension 5
Group $S_6$
Conductor $ 37423 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$37423 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 23 + \left(17 a + 39\right)\cdot 41 + \left(5 a + 6\right)\cdot 41^{2} + \left(36 a + 10\right)\cdot 41^{3} + \left(17 a + 37\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 6 + \left(13 a + 10\right)\cdot 41 + \left(12 a + 4\right)\cdot 41^{2} + \left(37 a + 21\right)\cdot 41^{3} + \left(5 a + 9\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 7 + \left(23 a + 29\right)\cdot 41 + \left(35 a + 5\right)\cdot 41^{2} + \left(4 a + 31\right)\cdot 41^{3} + \left(23 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 20\cdot 41 + 2\cdot 41^{2} + 30\cdot 41^{3} + 10\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 + 20\cdot 41 + 34\cdot 41^{2} + 32\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 a + 24 + \left(27 a + 2\right)\cdot 41 + \left(28 a + 28\right)\cdot 41^{2} + \left(3 a + 38\right)\cdot 41^{3} + \left(35 a + 30\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.