Properties

Label 5.349_6553.6t16.1c1
Dimension 5
Group $S_6$
Conductor $ 349 \cdot 6553 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$2286997= 349 \cdot 6553 $
Artin number field: Splitting field of $f= x^{6} - 7 x^{4} + 13 x^{2} - x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even
Determinant: 1.349_6553.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 96 a + 90 + \left(36 a + 94\right)\cdot 107 + \left(46 a + 45\right)\cdot 107^{2} + \left(105 a + 70\right)\cdot 107^{3} + \left(5 a + 25\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 81\cdot 107 + 41\cdot 107^{2} + 104\cdot 107^{3} + 3\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 a + 58 + \left(39 a + 48\right)\cdot 107 + \left(71 a + 22\right)\cdot 107^{2} + \left(11 a + 71\right)\cdot 107^{3} + \left(85 a + 22\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 28\cdot 107 + 69\cdot 107^{2} + 10\cdot 107^{3} + 80\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 46 + \left(70 a + 39\right)\cdot 107 + \left(60 a + 87\right)\cdot 107^{2} + \left(a + 17\right)\cdot 107^{3} + \left(101 a + 51\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 a + 25 + \left(67 a + 28\right)\cdot 107 + \left(35 a + 54\right)\cdot 107^{2} + \left(95 a + 46\right)\cdot 107^{3} + \left(21 a + 30\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$-1$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$-1$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.