Properties

Label 5.331e2_547e2.10t13.1c1
Dimension 5
Group $S_5$
Conductor $ 331^{2} \cdot 547^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$32781637249= 331^{2} \cdot 547^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 7 x^{2} + 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 6 + \left(35 a + 9\right)\cdot 37 + \left(23 a + 15\right)\cdot 37^{2} + \left(20 a + 11\right)\cdot 37^{3} + a\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 15 + \left(5 a + 1\right)\cdot 37 + \left(27 a + 22\right)\cdot 37^{2} + \left(17 a + 24\right)\cdot 37^{3} + \left(35 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 35 + \left(a + 6\right)\cdot 37 + \left(13 a + 1\right)\cdot 37^{2} + \left(16 a + 33\right)\cdot 37^{3} + \left(35 a + 22\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 29 + \left(31 a + 1\right)\cdot 37 + \left(9 a + 14\right)\cdot 37^{2} + \left(19 a + 31\right)\cdot 37^{3} + \left(a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 17\cdot 37 + 21\cdot 37^{2} + 10\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.