Properties

Label 5.302123e4.12t183.1c1
Dimension 5
Group $S_6$
Conductor $ 302123^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$8331729352336052222641= 302123^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} - 2 x^{3} - x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 22 + \left(34 a + 17\right)\cdot 43 + \left(27 a + 39\right)\cdot 43^{2} + \left(37 a + 35\right)\cdot 43^{3} + \left(16 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 33\cdot 43 + 30\cdot 43^{2} + 4\cdot 43^{3} + 19\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 3 + \left(23 a + 25\right)\cdot 43 + \left(28 a + 7\right)\cdot 43^{2} + \left(41 a + 20\right)\cdot 43^{3} + \left(34 a + 13\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 19 + \left(8 a + 12\right)\cdot 43 + \left(15 a + 32\right)\cdot 43^{2} + \left(5 a + 2\right)\cdot 43^{3} + \left(26 a + 19\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 37 + \left(19 a + 14\right)\cdot 43 + \left(14 a + 12\right)\cdot 43^{2} + \left(a + 33\right)\cdot 43^{3} + \left(8 a + 6\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 + 25\cdot 43 + 6\cdot 43^{2} + 32\cdot 43^{3} + 30\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$1$
$15$$2$$(1,2)$$-3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$2$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$1$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.