Properties

Label 5.2e9_3_7e4.6t16.2
Dimension 5
Group $S_6$
Conductor $ 2^{9} \cdot 3 \cdot 7^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$3687936= 2^{9} \cdot 3 \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - 2 x^{3} + x^{2} - 2 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 167 a + 52 + \left(186 a + 78\right)\cdot 193 + \left(190 a + 25\right)\cdot 193^{2} + \left(157 a + 90\right)\cdot 193^{3} + \left(112 a + 99\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 23\cdot 193 + 35\cdot 193^{2} + 151\cdot 193^{3} + 93\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 26 + \left(6 a + 98\right)\cdot 193 + \left(2 a + 29\right)\cdot 193^{2} + \left(35 a + 57\right)\cdot 193^{3} + \left(80 a + 54\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 62 + 104\cdot 193 + 147\cdot 193^{2} + 13\cdot 193^{3} + 32\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 134 a + 128 + \left(57 a + 175\right)\cdot 193 + \left(141 a + 128\right)\cdot 193^{2} + \left(69 a + 72\right)\cdot 193^{3} + \left(149 a + 13\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 59 a + 69 + \left(135 a + 99\right)\cdot 193 + \left(51 a + 19\right)\cdot 193^{2} + \left(123 a + 1\right)\cdot 193^{3} + \left(43 a + 93\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.